2014年3月25日 Helmut R. Brand氏 (終了)

日時: 2014年3月25日(火)16:00
場所: 首都大学東京 8号館302号室
講師: Prof. Helmut R. Brand(University of Bayreuth)
題目: Macroscopic behavior of systems with a dynamic preferred direction

要旨: We present the derivation of the macroscopic equations for systems with a dynamic preferred direction, which can be axial or polar in nature.

In addition to the usual hydrodynamic variables we introduce the mean angular velocity [1] or the macroscopic velocity [2] associated with the motion of
the active units as a new variable and discuss their macroscopic consequences [1,2]. Such an approach is expected to be useful for a number of biological systems including, for example, the formation of dynamic macroscopic patterns
shown by certain bacteria such as Proteus mirabilis, shoals of fish, flocks of birds and migrating insects.
As a concrete application we set up a macroscopic model of bacterial growth and transport based on a polar dynamic preferred direction -- the collective velocity of the bacteria [3]. This collective velocity is subject to the isotropic-nematic transition modeling the density-controlled transformation between immotile and motile bacterial states. The approach can be applied also to other systems spontaneously switching between individual (disordered) and collective (ordered) behavior, and/or collectively responding to density variations, e.g., bird flocks, fish schools etc. We observe a characteristic and robust stop-and-go behavior of the type also observed for the growth of bacteria experimentally [4].

[1] H.R. Brand, H. Pleiner and D. Svensek, Eur. Phys. J. E34, 128 (2011).
[2] H. Pleiner, D. Svensek and H.R. Brand, Eur. Phys. J. E36, 135 (2013).
[3] D. Svensek, H. Pleiner and H.R. Brand, Phys. Rev. Lett. 111, 228101 (2013).
[4] Y. Yamazaki et al., Physica D - Nonlinear Phenomena, 205 D, 236 (2005).

(本セミナーは首都大物理教室セミナーとの共催です。)